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Abstract. The experimentally determined marked rise of the stress intensity factor required to initiate crack
propagation in brittle solids under variably high loading rates, is analyzed. This problem of fracture initiation
at the tip of a crack is considered in terms of activating a flaw at some distance away from the tip. By using a
semi-infinite crack in an unbounded two-dimensional solid subjected to spatially uniform but temporally varying
crack-face pressure, we consider the evolution of stress at the failure initiation site. Fracture initiation is assumed
synonymous with attaining a critical stress at the fracture site. The results conform to typical experimental data of
dynamic crack initiation in brittle solids.
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1. Introduction

When crack tips in brittle materials are subjected to increasingly higher loading rates or
shorter stress pulses, the stress level needed for initial crack propagation increases sharply
(Smith, 1975; Ravi-Chandar and Knauss, 1984). A similar phenomenon has been observed
by Shockey and his colleagues (Kalthoff and Shockey, 1977; Homma et al., 1983; Shockey
et al., 1983; 1986) in the initiation and spread of damage under conditions leading to spall.
Although they have explained their experimental results through material rate dependence,
such an observation is initially surprising in that one does not expect such a strongly time
dependent response in a material that exhibits no apparent intrinsic rate sensitive behavior.
In defence of this rate dependent material modeling, it must be recognized that the crack
initiation phenomenon occurs typically on a spatially very small size scale within which ma-
terial properties are not often measured directly and are thus not necessarily well established,
especially not under high deformation rates. On the other hand it is appropriate to examine
whether such time dependent effects can arise from wave phenomena alone while retaining
(linearly) elastic constitutive behavior and brittle fracture response in the analysis. In fact, we
shall see that such consideration can well explain the apparent rate dependence of the fracture
initiation process.

Steverding and Lehnigk (1970) have suggested without further physical explanations that
this phenomenon is governed by a ‘critical impulse criterion’ such that the product of the
crack-tip stress to a certain power and the pulse duration be a constant. Alternately, Petrov and
Morozov (1994) have postulated a ‘structure-time criterion’ that requires a (micro) structure
based time,τ , which is not identified further and needs to be determined individually for each
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Figure 1. Time history of applied pressure used in the experimental study.

material, as well as a structural size parameter estimated fromd = 2K2
IC/πσ

2
c , whereKIC

is the quasistatic fracture toughness. In analyzing the data from Ravi-Chandar and Knauss
(1984) they assumed implicitly, however, that the near-tip field is governed by the stress
intensity factor, which assumption is not valid inasmuch as the stress field there possesses
highly transient characteristics (Ma and Freund, 1986; Ravi-Chandar and Knauss, 1987).

Here we examine the effect of the interaction of this temporally evolving stress field at
the tip of a macroscopic crack with small defects in its vicinity, where are allowed to grow
once a stress has been achieved that is critical for their size or severity. Such cracks are then
understood to grow and coalesce rapidly thereby effecting the growth of the macroscopic
crack.

Following Smith (1975), Ravi-Chandar and Knauss (1984) conducted experiments on large
plates of Homalite-100 (a brittle Polyester) simulating the infinite domain for the duration of
the experiment, which arrangement allowed the use of Freund’s exact analysis derived for
the infinite elastic plane (Freund, 1972). Loading was achieved in the experiments through
an electro-magnetic device (Lorentz force generator) for imparting spatially uniform pressure
histories to the crack faces that can be well approximated by ramps possessing constant rise
times of 25µsec. Through varying the magnitude of the final pressure the rate of loading could
be varied as illustrated in Figure 1. By recording the caustic patterns at the crack tip through
high speed photography the history of the stress intensity was recorded (see Ravi-Chandar
and Knauss, 1982). Results from Ravi-Chandar and Knauss (1984) are rendered in Figure 2
showing the stress intensity factor at the time the crack began to propagate which illustrates
clearly the sharp rise in the stress intensity factor as the crack propagation initiation moves to
shorter times.

It will be the purpose of the following exposition to ‘explain’ the phenomenon of rate de-
pendence of the dynamic initiation toughness of brittle solids, in mechanics terms of transient
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Figure 2. Variation of the stress intensity factor required for initiation against the time to fracture.

Figure 3. A semi-infinite crack subjected to uniformly distributed pressure on its surface that varying with timet .

wave motion in the elastic domain around the tip of the initially stationary crack, and without
invoking any intrinsic time dependence of the material.

2. The model

To demonstrate the feasibility of the concept proposed in the introduction, we consider, with
reference to Figure 3, the following situation: A semi-infinite crack is located in an infinite
medium with its tip atx1 = 0 andx2 = 0. A defect is located at a small distanceδ ahead of this
tip. The crack flanks are subjected to a spatially uniform pressurep(t) of timewise varying
magnitude. The defect breaks into a growing (micro) crack when the stress level, in particular
the stressσ+(δ, t) at the point(x1 = δ, x2 = 0), reaches a valueσcr, which happens at some
time tcr to be determined. It is of interest then to determine the transient tensile traction at
the pointx1 = δ. To this end it will be insufficient to consider only the time-varying stress
intensity field, because for very short times that field will not have spread sufficiently far to
engulf the defect (see discussions ofKI -dominance in Ravi-Chandar and Knauss, 1987 and
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Krishnaswamy and Rosakis, 1991). We are thus, specifically, interested in determining the
stress rise history atx1 = δ.

A word is in order with respect to the chosen pressure distribution over the (semi-infinite)
crack flanks. Because of the infinite extent of the boundary loading we expect that for infinite
time the moment acting on the infinite solid is unbounded, so that the solution offered below
does not have a long-time static limit. However, this fact has no essential consequence for this
demostration, since we are only interested in relatively short times after the loading is applied.
The present approach should render a reasonable evaluation of whether the proposed physics
has relevance to dynamic fracture initiation in ideally brittle, rate insensitive material.

In more realistic situations it may be necessary to consider not only a single flaw in the
crack-tip region. Instead, it is probably more correct to allow for statistical distributions of
defects with respect to both severity and space. We believe, however, that the current simpler
model illustrates the behavior attached to the stress-wave-and-flaw-interaction concept.

3. Transient stress field around the crack tip

LetR be an unbounded two dimensional region occupied by a body composed of an isotropic,
homogeneous, linearly elastic material. The body contains a straight semi-infinite crack lo-
cated in−∞ < x1 6 0, x2 = 0, see Figure 3. For timet < 0, the body is stress free and
at rest everywhere. At timet = 0, a uniformly distributed pressure with magnitudep(t), is
applied on the crack flanks. For planar deformation, two displacement potentials,φ(x1, x2, t)

andψ(x1, x2, t), exist such that the two in-plane non-zero displacement components can be
expressed through

uα(x1, x2, t) = φ,α(x1, x2, t)+ eαβψ,β(x1, x2, t), ∀(x1, x2) ∈ ◦
R, t > 0, (3.1)

where
◦

R= R − {−∞ < x1 6 0, x2 = 0}, andα, β ∈ {1,2}. The summation convention is
used here andeαβ is the two dimensional alternator. The nominal stress components are given
by

σ11 = µ

{
c2
l

c2
s

φ,αα − 2φ,22 + 2ψ,12

}

σ22 = µ

{
c2
l

c2
s

φ,αα − 2φ,11 − 2ψ,12

}

σ12 = µ{2φ,12 + ψ,22 − ψ,11}



, ∀(x1, x2) ∈ ◦

R, t > 0, (3.2)

whereµ is the shear modulus, andcl andcs are the dilatational and shear wave speeds of the
elastic material, respectively, given by

cl =
{
κ + 1

κ − 1
· µ
ρ

}1/2

, cs =
{
µ

ρ

}1/2

, (3.3)

whereκ = 3− 4ν for plane strain andκ = (3 − ν)/(1+ ν) for plane stress, withρ being the
mass density andν the Poisson’s ratio of the elastic solid.
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In terms of the two displacement potentials,φ(x1, x2, t) andψ(x1, x2, t), the equations of
motion in the absence of body force density are

φ,αα(x1, x2, t)− a2φ̈(x1, x2, t) = 0

ψ,αα(x1, x2, t)− b2ψ̈(x1, x2, t) = 0

}
, ∀(x1, x2) ∈ ◦

R, t > 0, (3.4)

wherea = 1/cl andb = 1/cs . The boundary conditions are

σ22(x1,0±, t) = −p(t), −∞ < x1 6 0

σ12(x1,0±, t) = 0, −∞ < x1 < ∞
u2(x1,0±, t) = 0, 0< x1 < ∞


 , t > 0, (3.5)

while the initial conditions are

φ(x1, x2,0) = ψ(x1, x2,0) = 0

φ̇(x1, x2,0) = ψ̇(x1, x2,0) = 0

}
, ∀(x1, x2) ∈ ◦

R . (3.6)

The requirement that the displacements should be bounded throughout the region, or that the
mechanical energy density be integrable allows, nevertheless, that the stresses at the crack tip
be singular, so that we have∫

R′
(σαβεαβ + ρu̇αu̇α)dA < ∞, ∀R′ ⊂ ◦

R . (3.7)

In agreement with Figure 4, the pressure applied to the crack faces,p(t), is assumed to
have the (ramp) form

p(t) =
{

σ ∗t
T
, 0< t < T,

σ ∗, t > T,
(3.8)

whereT represents the finite rise time. To obtain the solution for the normal traction ahead of
the crack tip, we obtain first the solution corresponding toT = 0 (step function profile) from
which the final solution can be easily constructed.

3.1. SOLUTION FOR THE STEP PRESSURE

For the pressure

p(t) = σ ∗H(t), (3.9)

with H(·) denoting the Heaviside step function, the normal traction ahead of the stationary
crack tip,σ+(x1, t), can be obtained as (Freund, 1990),

σ+(x1, t) = −σ
∗

π
·
√

2(1 − 2ν)

2(1 − ν)

∫ t

ax1

c
a

− η

ax1√
η

ax1
− 1

·
S+

(
− η

x1

)
η

dη ·H(t − ax1), (3.10)
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Figure 4. Profiles of the pressure applied on the surface of a semi-infinite stationary crack.T represents the finite
rise time of the loading.

wherec = 1/cR andcR is the Rayleigh wave speed of the elastic solid determined from

D(v) ≡ 4
(

1 − v2

c2
l

)1/2 (
1 − v2

c2
s

)1/2

−
(

2 − v2

c2
s

)2

= 0. (3.11)

In expression (3.10), the functionS+(ζ ) is defined by

S+(ζ ) = exp

{
− 1

π

∫ b

a

tan−1

[
4x2

√
(x2 − a2)(b2 − x2)

(b2 − 2x2)2

]
dx

x + ζ

}
. (3.12)

The distribution of the normal tractionσ+(x1, t) under the surface pressure (3.9) is plotted in
Figure 5, forν = 0.3, assuming plane stress conditions. In addition, the arrival of each wave is
indicated in the figure as well. The stress intensity factor at the crack tip,KI(t) corresponding
to the step pressure situation is

KI(t) = 2σ ∗

1 − ν

√
(1 − 2ν)cl t

π
. (3.13)

3.2. CRACK FACE PRESSURE WITH FINITE RISE TIME

Based on the solution for the step crack-face pressure, solutions for ramp loadings (3.8), can
be obtained by superposition. The normal traction ahead of the stationary crack tip is then

σ+(x1, t)

σ ∗ =




∫ t/T

0
G

(
T

ax1

(
t

T
− η

))
dη, 0< t < T,

∫ 1

0
G

(
T

ax1

(
t

T
− η

))
dη, t > T,

(3.14)
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Figure 5. Variation of the normal traction ahead of the stationary crack tip for plane stress. The crack-face pressure
has the step function profile.

where

G(ξ) =
∫ √

ξ−1

0
τb(λ)dλ ·H(ξ − 1),

and

τb(λ) = −
√

2(1 − 2ν)

π(1 − ν)

{( c
a

− 1
)

− λ2
} S+(−a(1 + λ2))

1 + λ2
.

Now, the stress intensity factor at the crack tip is given by

KI(t)

σ ∗√πclT =




4
√

1 − 2ν

3π(1 − ν)

(
t

T

)3/2

, 0< t < T,

4
√

1 − 2ν

3π(1 − ν)

{(
t

T

)3/2

−
(
t

T
− 1

)3/2
}
, t > T .

(3.15)

The normal traction ahead of the crack tip is plotted in Figure 6 for ramp pressure loading.
As in Figure 5, only plane stress solutions are shown forν = 0.3. For comparison purposes,
the distribution forT = 0 is presented as well. Note that for various values ofT , the initial
normal traction is all negative and decreasing, it increases at the moment when the shear wave
arrives. The initial increase is rather slow until the loading signal corresponding to the plateau
portion of the pressure function arrives. Also notice that the final increasing rate of the normal
traction is almost the same for all the values ofT . In Figure 7, the stress intensity factor at the
stationary crack tip is plotted as a function of timet . From this figure one can see that when
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Figure 6. Distribution of the normal traction ahead of the tip of a semi-infinite stationary crack that is subjected
to uniform pressure with finite rise time (plane stress).

Figure 7. Variation of the stress intensity factor at the stationary crack tip,KI , as a function of timet .



Loading rates and the dynamic initiation toughness in brittle solids111

Figure 8. Comparison of the transient traction solution with itsKI -dominant representation.

t/T < 1, the quantityK̇I(t), which provides the measure of loading rate at the crack tip, is an
increasing function of timet , while for t/T > 1, K̇I(t) decreases with respect to timet .

To study the region ofKI -dominance, the ratio of the normal traction ahead of the crack
tip, σ+(x1, t), to the quantityKI(t)/

√
2πx1, which is the leading term in the asymptotic

representation of the stress field, is plotted againstclt/x1 in Figure 8. Only two values of
the rise timeT are considered, one for the step loading case (T = 0, open circles), and one
for nonzeroT (solid circles). One observes that for the normal traction to approach itsKI -
dominant representation at a fixed point ahead of the crack tip, an extremely long time is
needed. On the other hand, for fixed timet , theKI -dominant solution is applicable only at
points that are very close to the crack tip. Therefore, at a finite distance from the crack tip
and at moments of earlier stages of loading, no region exists that can be described accurately
by the leading term of the asymptotic solution alone. This observation is at the heart of the
apparent rate dependence of the initiation time.

4. Dynamic crack initiation

As discussed in the introduction, we view the inititation of a stationary crack as a process
that the defects in the vicinity of the crack tip develop into small secondary cracks, and these
secondary cracks coalesce with the original crack so as to enlarge it further. The formation
of the secondary cracks in the vicinity of the crack tip is controlled by the stress level at that
location. It is also believed that this process is closely connected to how the stress level reaches
the critical value,i.e., the loading history at the location of the defects. In this section, the effect
of loading rate on the dynamic initiation toughness of a stationary crack is considered using
the model problem solved in the previous section.

In the previous section, we determined the transient stress field surrounding the tip of a
semi-infinite crack in an unbounded region. The surface of the crack is subjected to a spatially
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Figure 9. Variation of the normal traction at the locationx1 = δ ahead of the stationary crack tip for different rise
timesT . At time tcr, the critical stressσcr, under which the defect breaks into secondary crack, is reached.

uniform but timewise varying pressure. The crack face pressurep(t) is characterized by its
peak valueσ ∗ and the rise timeT . The normal traction ahead of the stationary crack tip is
given in (3.14), and its variation is shown in Figure 6. Now consider a defect located at a
small distanceδ ahead of the stationary crack tip. The variation of the normal stress at the
locationx1 = δ is plotted in Figure 9 against the timet for different rise timesT . Suppose
that at the stress levelσcr, the defect breaks into a secondary crack, i.e., the critical condition
for formation of secondary cracks is

σ+(δ, tcr) = σcr. (4.1)

For a given rise timeT and the critical stressσcr, from

σcr

σ ∗ =




∫ tcr/T

0
G

(
T

aδ

(
tcr

T
− η

))
dη, 0< tcr < T,

∫ 1

0
G

(
T

aδ

(
tcr

T
− η

))
dη, tcr > T,

(4.2)

where the functionG(·) has been defined in the previous section, the critical timetcr can be
determined as a function of the rise timeT for different ratios ofσcr/σ

∗ and is plotted in
Figure 10. For a given rise timeT and the critical stressσcr, together with the critical time
tcr established from (4.2) and Figure 10, the apparent dynamic fracture toughness,Kd

IC, is
calculated from

Kd
IC

σ ∗√πclT =




4
√

1 − 2ν

3π(1 − ν)

(
tcr

T

)3/2

, 0< tcr < T,

4
√

1 − 2ν

3π(1 − ν)

{(
tcr

T

)3/2

−
(
tcr

T
− 1

)3/2
}
, tcr > T .

(4.3)
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Figure 10. Variation of the critical timetcr, at which the secondary cracks are formed, as a function of the rise
timeT for different ratios ofσcr/σ

∗.

This apparent stress intensity factor at the moment of crack initiation, for a fixed ratioσcr/σ
∗,

is plotted as solid circles in Figure 11 for different rise times. Note that for the given critical
stress levelσcr, the apparent initiation toughness is almost a constant for small values of critical
time tcr, and then drops drastically when the critical timetcr becomes larger. The transition
occurs when the critical timetcr = T . The prefracture variation of the stress intensity factor at
the stationary crack tip, as a function of time, is also shown in Figure 11 ending at the solid
circles: for eachclT /δ and givenσ ∗, the stress intensity factorKI is an increasing function of
time t until t = tcr when the crack starts to propagate.

Several observations are appropriate. Figure 12 describes the relation between the appar-
ent fracture toughnessKd

IC and the critical timetcr at which the crack initiates for different
critical stressesσcr. The apparent fracture toughnessKd

IC is normalized by the quantityKs
IC =

σcr

√
2πδ in Figure 12. Note that all the curves collapse into a single one whentcr > T

for different critical stressesσcr. Meanwhile, after the moment when the critical timetcr is
comparable to the rise timeT , the fracture toughnessKd

IC decreases with the increase in the
critical time tcr. Another way to examine the effect of the critical stressσcr on the apparent
fracture toughness is presented in Figure 13. With respect to a fixed position ahead of the
stationary crack tip, for any given rise timeT of the loading pressure and any critical time
tcr, the apparent fracture toughnessKd

IC is completely determined from (4.3). This relation
can be described by a surfaceKd

IC = KI(tcr, T ), as shown in Figure 13. However, for a
given critical stressσcr, as determined in independent experimental measurements say, or
from micromechanical analysis, the critical timetcr should be determined through (4.2) for
the fixed position ahead of the stationary crack tip,δ. Now the relation between the apparent
fracture toughnessKd

IC, critical time tcr, and rise timeT will be a curve on the surface in
Figure 13, which is represented by the solid circles in the figure. From the above observations,
one appreciates that as the critical timetcr becomes larger than the rise time of the applied
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Figure 11. Variation of the stress intensity factorKI(t) at the stationary crack tip. For the given critical values of
σcr andTcr, the apparent fracture toughnessKd

I can be obtained for different rise timesT .

Figure 12. Variation of the apparent fracture toughnessKd
IC, as a function of the critical timetcr for different

critical stressesσcr.
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Figure 13. Complete relation between the apparent fracture toughnessKd
IC, rise timeT , critical timetcr, and the

critical stressσcr.

Figure 14. Variation of the normal stress ahead of the stationary crack tip at the moment of crack inititiation, as a
function of the distance from the crack tip.
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Figure 15. Relationship betweenKd
IC andtcr from analytical calculations and from experimental measurements:

(a) plane-strain, (b) plane-stress.

stressT , the apparent fracture toughnessKd
IC is a decreasing function. If we identifytcr as the

moment at which the crack starts to propagate, these observations are in agreement with the
experimental measurements on Homalite-100 material by Ravi-Chandar and Knauss (1984).

5. Comparison with experiments

To compare the experimental observations of Ravi-Chandar and Knauss (1984) to the theoret-
ical analysis discussed in the previous section, we need to know first the traction distribution
along the line ahead of the stationary crack tip at the moment of crack initiation. For the case
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σ ∗ = 1.08 MPa andtcr = 106.69µsec, according to (3.14), the distribution of the normal
stress at the moment of crack initiationtcr, is plotted in Figure 14 for material parameters of
Homalite-100(cl = 2057 m/sec, ν = 0.3), and for two different deformation conditions. One
sees that the difference between plane-strain and plane-stress assumptions is quite small. This
is so because the boundary conditions are described in terms of tractions on the crack faces
and the small difference is thus due to the slight change of elastic wave speeds under the two
assumptions. Figure 14 provides the information about the stress level at any given distance
from the crack tip and the moment of crack initiation for one particular test situation: choose
a fixed distanceδ, and the corresponding stress level in Figure 14 asσcr; using the dynamic
initiation criterion, (4.1), the relationship between the apparent critical stress intensity factor
Kd

IC and the time to fracturetcr for any prescribed crack face pressureσ ∗, can be determined.
First, the critical timetcr is calculated from (4.2) for the given crack face pressureσ ∗ and
rise timeT . Then the apparent dynamic fracture toughnessKd

IC is calculated from (4.3). The
comparison between this analytical calculations and the experimental measurements is shown
in Figures 15(a, b) for both plane-strain and plane-stress conditions. Once again, the difference
between plane-strain and plane-stress is small. However, close examination reveals that the
plane-strain condition is somewhat closer to the experimental results.

From Figures 15(a, b), one deduces that the model suggested in the previous section, cap-
tures the general trend of the experimental observations quite well. Ravi-Chandar and Knauss
(1984) had suggested that fracture initiation is controlled by a time and rate invariant criterion
for ‘times’ greater than about 50 to 60µsec, while for shorter times or at higher rates of
loading either the fracture criterion changes or the time dependent material behavior becomes
important. However, the model proposed in this investigation, indicates that when the initiation
time is larger than about 60µsec, the loading rate does not have much effect on the fracture
toughness. Conversely, it also showed that the marked increase in inititation toughness at high
loading rates is the consequence of how fast (or slow) the stress reaches the critical level at
the critical site. Therefore, the fracture initiation is really controlled by a unified mechanism.
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